

Mechanical Vibrations

Sixth Edition in SI Units

Singiresu S. Rao

Mechanical Vibrations Sixth Edition in SI Units

Access for Companion Website

Thank you for purchasing a copy of *Mechanical Vibrations*, Sixth Edition in SI Units, by Singiresu S. Rao. Your textbook includes 12 months of prepaid access to the book's Companion Website.

The one-time password below provides access to additional chapters, answers, and MATLAB programs found on the Companion Website.

For students:

To access the Companion Website:

- 1. Go to www.pearsonglobaleditions.com/rao.
- 2. Click on "Companion Website".
- 3. Click on the "Register" button.
- 4. Follow the on-screen instructions to establish your login name and password. When prompted, enter the access code given below. Do not type the dashes.
- 5. Once you have registered, you can log in at any time by providing your login name and password.

For instructors:

To access the Instructor Resources, go to www.pearsonglobaleditions.com/rao and click on "Instructor Resources". Click on the resources (e.g., Instructor's Solutions Manual) you want to access, and you will be prompted to sign in with your login name and password. Please proceed if you already have access to the Instructor Resources.

If you do not have access, please contact your local Pearson representative.

IMPORTANT: The access code on this page can be used only once to establish a subscription to the Companion Website.

This page intentionally left blank

Equivalent Masses, Springs and Dampers

Equivalent masses

Coupled translational and rotational masses

Masses on a hinged bar

 $m_{eq} = m + \frac{J_0}{r^2}$

$$J_{eq} = J_0 + mR^2$$

$$m_{eq_1} = m_1 + \left(\frac{l_2}{l_1}\right)^2 m_2 + \left(\frac{l_3}{l_1}\right)^2 m_3$$

Rod under axial load ($l = \text{length}, A = \text{cross sectional area}$)	$k_{eq} = \frac{EA}{l}$
Tapered rod under axial load $(D, d = \text{end diameters})$	$k_{eq} = \frac{\pi E D d}{4l}$
Helical spring under axial load (d = wire diameter, D = mean coil diameter, n = number of active turns)	$k_{eq} = \frac{Gd^4}{8nD^3}$
Fixed-fixed beam with load at the middle	$k_{eq} = \frac{192EI}{l^3}$

 $\overline{0000}$ <u> //////</u> Cantilever beam with end load

Simply supported beam with load at the middle

Springs in series

Springs in parallel

surfaces

Hollow shaft under torsion (l = length, D = outer diameter,d = inner diameter,

Relative motion between parallel

(A = area of smaller plate)

Dashpot (axial motion of a piston in a cylinder)

Torsional damper

 $k_{eq} = \frac{3EI}{l^3}$

$$k_{eq} = \frac{48El}{l^3}$$

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$$
$$k_{eq} = k_1 + k_2 + \dots + k_n$$

$$k_{eq} = \frac{\pi G}{32l} \left(D^4 - d^4 \right)$$

 $c_{eq} = \frac{\mu A}{h}$

$$c_{eq} = \mu \frac{3\pi D^3 l}{4d^3} \left(1 + \frac{2d}{D}\right)$$

$$c_{eq} = \frac{\pi\mu D^2(l-h)}{2d} + \frac{\pi\mu D^3}{32h}$$

Dry friction (Coulomb damping) $c_{eq} = \frac{4fN}{\pi\omega X}$ (fN = friction force, $\omega =$ frequency, X = amplitude of vibration)

Mechanical Vibrations

This page intentionally left blank

Mechanical Vibrations

Sixth Edition in SI Units

Singiresu S. Rao

University of Miami

SI Conversion by Philip Griffin University of Limerick, Ireland

Vice President and Editorial Director, ECS: Marcia J. Horton Senior Editor: Norrin Dias Editorial Assistant: Michelle Bayman Program and Project Management Team Lead: Scott Disanno Program/Project Manager: Sandra L. Rodriguez Editor, Global Editions: Subhasree Patra Director of Operations: Nick Sklitsis Operations Specialist: Maura Zaldivar-Garcia

Cover Image: *pixelparticle/Shutterstock*

Pearson Education Limited KAO Two KAO Park Harlow CM17 9NA United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© 2018 by Pearson Education, Inc. or its affiliates.

Authorized adaptation from the United States edition, entitled Mechanical Vibrations, Sixth Edition, ISBN 978-0-134-36130-7, by Singiresu S. Rao, published by Pearson Education, Inc., publishing as Pearson Prentice Hall © 2017, 2011.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

MATLAB is a registered trademark of The Math Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-292-17860-4 ISBN-13: 978-1-292-17860-8

Printed in Malaysia (CTP-VVP)

Senior Production Manufacturing Controller, Global Editions: Jerry Kataria Media Production Manager, Global Editions: Vikram Kumar Product Marketing Manager: Bram Van Kempen Field Marketing Manager: Demetrius Hall Marketing Assistant: Jon Bryant Manager, Rights Management: Rachel Youdelman Full-Service Project Management/Composition: Ashwina Ragunath, Integra Software Services Pvt. Ltd. To Lord Sri Venkateswara

This page intentionally left blank

Contents

Preface

Acknowledgments 21		
List	of Syml	bols 23
	·	
СНАР	TER 1	
Fund	lament	als of Vibration 29
1.1	Prelimi	narv Remarks 30
1.2	Brief H	istory of the Study of Vibration 31
	1.2.1	Origins of the Study of Vibration 31
	1.2.2	From Galileo to Rayleigh 33
	1.2.3	Recent Contributions 36
1.3	Import	ance of the Study of Vibration 38
	1.3.1	Conversion of Vibrations to
		Sound by the Human Ear 40
1.4	Basic C	Concepts of Vibration 43
	1.4.1	Vibration 43
	1.4.2	Elementary Parts of
		Vibrating Systems 43
	1.4.3	Number of Degrees of Freedom 44
	1.4.4	Discrete and Continuous Systems 46
1.5	Classifi	cation of Vibration 46
	1.5.1	Free and Forced Vibration 46
	1.5.2	Undamped and Damped Vibration 47
	1.5.3	Linear and Nonlinear Vibration 47
	1.5.4	Deterministic and
1.6	T 7•1 /•	Random Vibration 47
1.6	Vibrati	on Analysis Procedure 48
1.7	Spring	Elements 52
	1./.1	Information of a Nonlinear Spring 55
	1.7.2	Spring Constants of Elestic Elements 57
	1.7.3	spring Constants of Elastic Elements 57

	1.7.4	Combination of Springs 60
	1.7.5	Spring Constant Associated with the
		Restoring Force due to Gravity 68
1.8	Mass or	· Inertia Elements 69
	1.8.1	Combination of Masses 70
1.9	Dampir	ng Elements 74
	1.9.1	Construction of Viscous Dampers 75
	1.9.2	Linearization of a Nonlinear Damper 81
	1.9.3	Combination of Dampers 81
1.10	Harmo	nic Motion 83
	1.10.1	Vectorial Representation of
		Harmonic Motion 85
	1.10.2	Complex-Number Representation
		of Harmonic Motion 86
	1.10.3	Complex Algebra 87
	1.10.4	Operations on Harmonic Functions 87
	1.10.5	Definitions and Terminology 90
1.11	Harmo	nic Analysis 93
	1.11.1	Fourier Series Expansion 93
	1.11.2	Complex Fourier Series 95
	1.11.3	Frequency Spectrum 96
	1.11.4	Time- and Frequency-Domain
		Representations 97
	1.11.5	Even and Odd Functions 98
	1.11.6	Half-Range Expansions 100
	1.11.7	Numerical Computation
		of Coefficients 101
1.12	Exampl	les Using MATLAB 105
1.13	Vibrati	on Literature 109
	Chapte	r Summary 110
	Referen	nces 110
	Review	Questions 112
	Problem	ns 116
	Design	Projects 149

Free Vibration of Single-Degree-of-Freedom Systems 153

2.1	Introduc	ction 155	
2.2	Free Vib	Vibration of an Undamped	
	Translat	ional System 158	
	2.2.1	Equation of Motion Using Newton's	
		Second Law of Motion 158	
	2.2.2	Equation of Motion Using Other	
		Methods 159	
	2.2.3	Equation of Motion of a Spring-Mass	
		System in Vertical Position 161	
	2.2.4	Solution 162	
	2.2.5	Harmonic Motion 163	
2.3	Free Vib	oration of an Undamped	
	Torsiona	al System 176	
	2.3.1	Equation of Motion 177	
	2.3.2	Solution 178	
2.4	Respons	e of First-Order Systems	
	and Tim	e Constant 181	
2.5	Rayleigh	's Energy Method 183	
2.6	Free Vib	oration with Viscous Damping 188	
	2.6.1	Equation of Motion 188	
	2.6.2	Solution 189	
	2.6.3	Logarithmic Decrement 198	
	2.6.4	Energy Dissipated in Viscous	
		Damping 199	
	2.6.5	Torsional Systems with Viscous	
		Damping 201	
2.7	Graphic	al Representation of Characteristic Roots	
	and Cor	responding Solutions 207	
	2.7.1	Roots of the Characteristic Equation 207	
	2.7.2	Graphical Representation of Roots and	
		Corresponding Solutions 208	
2.8	Paramet	er Variations and Root Locus	
	Represe	ntations 209	
	2.8.1	Interpretations of ω_n , ω_d , ζ , and τ in the	
		<i>s</i> -plane 209	
	2.8.2	Root Locus and Parameter	
		Variations 212	
2.9	Free Vib	oration with Coulomb Damping 218	
	2.9.1	Equation of Motion 219	
	2.9.2	Solution 220	
	2.9.3	Torsional Systems with Coulomb	
		Damping 223	

- 2.10 Free Vibration with Hysteretic Damping 225
- 2.11 Stability of Systems 231
- 2.12 Examples Using MATLAB 235 Chapter Summary 241 References 242 Review Questions 242 Problems 247 Design Projects 294

	Harn	nonically Excited Vibration 297		
	3.1	Introduction 299		
	3.2	Equation of Motion 299		
	3.3	Response of an Undamped System Under		
		Harmonic Force 301		
		3.3.1 Total Response 305		
		3.3.2 Beating Phenomenon 305		
	3.4	Response of a Damped System Under Harmonic		
		Force 309		
		3.4.1 Total Response 312		
		3.4.2 Quality Factor and Bandwidth 316		
	3.5	Response of a Damped System Under		
		$F(t) = F_0 e^{t\omega t} \qquad 317$		
	3.6	Response of a Damped System Under		
		the Harmonic Motion of the Base 320		
		3.6.1 Force Transmitted 322		
		3.6.2 Relative Motion 323		
	3.7	Response of a Damped System Under Rotating		
		Unbalance 326		
ts	3.8	Forced Vibration with Coulomb Damping332		
~	3.9	Forced Vibration with Hysteresis Damping337		
,	3.10	Forced Motion with Other Types		
	2.1.1	of Damping 339		
	3.11	Self-Excitation and Stability Analysis 340		
		3.11.1 Dynamic Stability Analysis 340		
		3.11.2 Dynamic Instability Caused by Fluid		
	2 1 2	Flow 344		
	3.12 2.12	Solutions Using Lordons Transforms 25(
	3.13 2.14	Solutions Using Laplace Transforms 550		
	5.14	2 14 1 Deletion between the Concered Transfer		
		5.14.1 Relation between the General Hanster Europian $T(a)$ and the Ereguency Transfer		
		Function $T(s)$ and the Frequency Transfer Function $T(s)$ 361		
		Function $I(l\omega) = 301$		
		Characteristics 362		
		Characteristics 302		

3.15 Examples Using MATLAB 365 Chapter Summary 371 References 371 Review Questions 372 Problems 375 Design Projects 402

CHAPTER 4

Vibration Under General Forcing Conditions 403

4.1	Introduction 404		
4.2	Respon	Response Under a General	
	Periodi	ic Force 405	
	4.2.1	First-Order Systems 406	
	4.2.2	Second-Order Systems 412	
4.3	Respon	se Under a Periodic Force	
	of Irreg	gular Form 418	
4.4	Respon	se Under a Nonperiodic Force 420	
4.5	Convol	ution Integral 421	
	4.5.1	Response to an Impulse 422	
	4.5.2	Response to a General Forcing	
		Condition 425	
	4.5.3	Response to Base Excitation 426	
4.6	Respon	se Spectrum 434	
	4.6.1	Response Spectrum for Base	
		Excitation 436	
	4.6.2	Earthquake Response Spectra 439	
	4.6.3	Design Under a Shock Environment 443	
4.7	Laplac	e Transforms 446	
	4.7.1	Transient and Steady-State	
		Responses 446	
	4.7.2	Response of First-Order Systems 447	
	4.7.3	Response of Second-Order	
		Systems 449	
	4.7.4	Response to Step Force 454	
	4.7.5	Analysis of the Step Response 460	
	4.7.6	Description of Transient Response 461	
4.8	Numer	ical Methods 467	
	4.8.1	Runge-Kutta Methods 469	
4.9	Respon	se to Irregular Forcing Conditions Using	
	Numer	ical Methods 471	
4.10	Examp	les Using MATLAB 476	
	Chapte	er Summary 480	
	Refere	nces 480	
	Review	Questions 481	

Problems484Design Projects506

CHAPTER 5

Two	-Degree-of-Freedom Systems 509
5.1	Introduction 510
5.2	Equations of Motion for Forced
	Vibration 514
5.3	Free-Vibration Analysis of an Undamped
	System 516
5.4	Torsional System 525
5.5	Coordinate Coupling and Principal
	Coordinates 530
5.6	Forced-Vibration Analysis 536
5.7	Semidefinite Systems 539
5.8	Self-Excitation and Stability Analysis 542
5.9	Transfer-Function Approach 544
5.10	Solutions Using Laplace Transform 546
5.11	Solutions Using Frequency Transfer
	Functions 554
5.12	Examples Using MATLAB 557
	Chapter Summary 564
	References 565
	Review Questions 565
	Problems 568
	Design Projects 594

Multi	degree-	of-Freedom S	Systems	596
6.1	Introduc	ction 598		
6.2	Modeling of Continuous Systems as Multidegree-			
	of-Freed	om Systems	598	
6.3	Using Ne	ewton's Second I	law to Derive	Equations
	of Motio	n 600		
6.4	Influence	e Coefficients	605	
	6.4.1	Stiffness Influen	ce Coefficients	s 605
	6.4.2	Flexibility Influe	ence Coefficier	nts 610
	6.4.3	Inertia Influence	Coefficients	615
6.5	Potential and Kinetic Energy Expressions in			
	Matrix F	Form 617		
6.6	Generali	ized Coordinates	and Generali	zed
	Forces	619		
6.7	Using La of Motio	agrange's Equati n 620	ons to Derive	Equations

12	CONTENTS
14	CONTINUE

6.8	Equations of Motion of Undamped Systems in		
	Matrix Form 624		
6.9	Eigenvalue Problem 626		
6.10	Solution of the Eigenvalue Problem 628		
	6.10.1 Solution of the Characteristic (Polynomial)		
	Equation 628		
	6.10.2 Orthogonality of Normal Modes 634		
	6.10.3 Repeated Eigenvalues 637		
6.11	Expansion Theorem 639		
6.12	Unrestrained Systems 639		
6.13	Free Vibration of Undamped Systems 644		
6.14	Forced Vibration of Undamped Systems Using		
	Modal Analysis 646		
6.15	Forced Vibration of Viscously Damped		
	Systems 653		
6.16	Self-Excitation and Stability Analysis 660		
6.17	Examples Using MATLAB 662		
	Chapter Summary 670		
	References 670		
	Review Questions 671		
	Problems 675		
	Design Projects 696		
<u>CHAP'</u>	ΓER 7		
Deter	mination of Natural Frequencies		
and M	10de Shapes 699		
7.1	Introduction 700		
7 2	Dunkarlaula 701		

7.2	Dunke	rley's Formula 701	
7.3	Rayleig	sh's Method 703	
	7.3.1	Properties of Rayleigh's Quotient 704	
	7.3.2	Computation of the Fundamental Natural	
		Frequency 706	
	7.3.3	Fundamental Frequency of Beams and	
		Shafts 708	
7.4	Holzer	's Method 711	
	7.4.1	Torsional Systems 711	
	7.4.2	Spring-Mass Systems 714	
7.5	Matrix	Iteration Method 715	
	7.5.1	Convergence to the Highest Natural	
		Frequency 717	
	7.5.2	Computation of Intermediate Natural	
		Frequencies 718	
7.6	Jacobi'	's Method 723	
7.7	Standa	rd Eigenvalue Problem 725	
	7.7.1	Choleski Decomposition 726	
	7.7.2	Other Solution Methods 728	

7.8 **Examples Using MATLAB** 728 **Chapter Summary** 731 References 731 **Review Questions** 733 Problems 735 **Design Projects** 744

Conti	nuous S	Systems 745
8.1	Introduction 746	
8.2	Transver	rse Vibration of a String or Cable 747
	8.2.1	Equation of Motion 747
	8.2.2	Initial and Boundary Conditions 749
	8.2.3	Free Vibration of a Uniform String 750
	8.2.4	Free Vibration of a String with Both Ends
		Fixed 751
	8.2.5	Traveling-Wave Solution 755
8.3	Longitud	linal Vibration of a Bar or Rod 756
	8.3.1	Equation of Motion and Solution 756
	8.3.2	Orthogonality of Normal Functions 759
8.4	Torsiona	l Vibration of a Shaft or Rod 764
8.5	Lateral V	Vibration of Beams 767
	8.5.1	Equation of Motion 767
	8.5.2	Initial Conditions 769
	8.5.3	Free Vibration 769
	8.5.4	Boundary Conditions 770
	8.5.5	Orthogonality of Normal
		Functions 772
	8.5.6	Forced Vibration 776
	8.5.7	Effect of Axial Force 778
	8.5.8	Effects of Rotary Inertia and Shear
		Deformation 780
	8.5.9	Beams on Elastic Foundation 785
	8.5.10	Other Effects 788
8.6	Vibratio	n of Membranes 788
	8.6.1	Equation of Motion 788
	8.6.2	Initial and Boundary Conditions 790
8.7	Rayleigh	's Method 791
8.8	The Ray	leigh-Ritz Method 794
8.9	Example	s Using MATLAB 797
	Chapter	Summary 800
	Reference	ees 800
	Review (Questions 802
	Problem	s 805
	Design P	roject 818

Vibra	tion Co	ontrol 819		
9.1	Introdu	action 820		
9.2	Vibrati	on Nomograph and Vibration		
	Criteria	a 821		
9.3	Reducti	ion of Vibration at the Source 825		
9.4	Balanci	ng of Rotating Machines 826		
	9.4.1	Single-Plane Balancing 826		
	9.4.2	Two-Plane Balancing 829		
9.5	Whirlin	ng of Rotating Shafts 835		
	9.5.1	Equations of Motion 835		
	9.5.2	Critical Speeds 837		
	9.5.3	Response of the System 838		
	9.5.4	Stability Analysis 840		
9.6	Balanci	ng of Reciprocating Engines 842		
	9.6.1	Unbalanced Forces Due to Fluctuations in		
		Gas Pressure 842		
	9.6.2	Unbalanced Forces Due to Inertia of the		
		Moving Parts 843		
	9.6.3	Balancing of Reciprocating Engines 846		
9.7	Control	of Vibration 848		
9.8	Control	Control of Natural Frequencies 848		
9.9	Introdu	action of Damping 849		
9.10	Vibrati	on Isolation 851		
	9.10.1	Vibration Isolation System with Rigid		
		Foundation 854		
	9.10.2	Vibration Isolation System with Base		
		Motion 864		
	9.10.3	Vibration Isolation System with Flexible		
		Foundation 872		
	9.10.4	Vibration Isolation System with Partially		
	0.10.5	Flexible Foundation 874		
	9.10.5	Shock Isolation 8/5		
0.11	9.10.6	Active Vibration Control 878		
9.11	Vibrati	on Absorbers 883		
	9.11.1	Undamped Dynamic Vibration		
	0 11 0	Absorber 884		
	9.11.2	Damped Dynamic Vibration		
0.12	E	ADSOIDER 891		
9.12	Examples Using MATLAB 695			
	Chapter Summary 903			
	Referen	Ouestions 005		
	Drobler	Questions 905		
	Decim	lls 907 Ducicat 022		
	Design	rroject 922		

CHAPTER 10

Vibration Measurement and Applications 924

- 10.1 Introduction 925 10.2 Transducers 927 10.2.1 Variable-Resistance Transducers 927 10.2.2 Piezoelectric Transducers 930 10.2.3 Electrodynamic Transducers 931 10.2.4 Linear Variable Differential Transformer Transducer 932 10.3 **Vibration Pickups** 933 10.3.1 935 Vibrometer 10.3.2 Accelerometer 936 10.3.3 940 Velometer 10.3.4 Phase Distortion 942 10.4 **Frequency-Measuring Instruments** 944 10.5 Vibration Exciters 946 10.5.1 Mechanical Exciters 946 10.5.2 Electrodynamic Shaker 947 10.6 949 **Signal Analysis** 10.6.1 Spectrum Analyzers 950 10.6.2 951 Bandpass Filter Constant-Percent Bandwidth and 10.6.3 Constant-Bandwidth Analyzers 952 10.7 **Dynamic Testing of Machines and** Structures 954 10.7.1 Using Operational Deflection-Shape Measurements 954 10.7.2 Using Modal Testing 954 10.8 **Experimental Modal Analysis** 954 10.8.1 The Basic Idea 954 10.8.2 954 The Necessary Equipment 10.8.3 957 Digital Signal Processing 10.8.4 Analysis of Random Signals 959 10.8.5 Determination of Modal Data from **Observed** Peaks 961 10.8.6 Determination of Modal Data from Nyquist Plot 964
 - 10.8.7 Measurement of Mode Shapes 966
- 10.9 **Machine-Condition Monitoring and**

Diagnosis 969

- 10.9.1 Vibration Severity Criteria 969
- 10.9.2 Machine Maintenance Techniques 969
- 10.9.3 Machine-Condition Monitoring Techniques 970

	10.9.4 Vibration Monitoring Techniques	972
	10.9.5 Instrumentation Systems 978	
	10.9.6 Choice of Monitoring Parameter	978
10.10	Examples Using MATLAB 979	
	Chapter Summary 982	
	References 982	
	Review Questions 984	
	Problems 986	
	Design Projects 992	

Numerical Integration Methods in Vibration Analysis 993

- 11.1 Introduction 994
- 11.2 Finite Difference Method 995
- 11.3 Central Difference Method for Single-Degree-of-Freedom Systems 996
- 11.4 Runge-Kutta Method for Single-Degree-of-Freedom Systems 999
- 11.5 Central Difference Method for Multidegree-of-Freedom Systems 1001
- 11.6
 Finite Difference Method for Continuous

 Systems
 1005
 - 11.6.1Longitudinal Vibration of Bars100511.6.2Transverse Vibration of Beams1009
- 11.7 Runge-Kutta Method for Multidegree-of-Freedom Systems 1014
- 11.8 Houbolt Method 1016
- 11.9 Wilson Method 1019
- 11.10 Newmark Method 1022
- 11.11 Examples Using MATLAB 1026 Chapter Summary 1032 References 1032 Review Questions 1033 Problems 1035

CHAPTER 12

Finite Element Method 1041

- 12.1 Introduction 1042
- 12.2 Equations of Motion of an Element 1043
- 12.3 Mass Matrix, Stiffness Matrix, and Force Vector 1045

	12.3.1	Bar Element 1045	
	12.3.2	Torsion Element 1048	
	12.3.3	Beam Element 1049	
12.4	Transfo	ormation of Element Matrices	
	and Veo	ctors 1052	
12.5	Equation	ons of Motion of the Complete Sys	tem
	of Finit	e Elements 1055	
12.6	Incorpo	oration of Boundary Conditions	1057
12.7	Consist	ent- and Lumped-Mass Matrices	1066
	12.7.1	Lumped-Mass Matrix for a Bar	
		Element 1066	
	12.7.2	Lumped-Mass Matrix for a Beam	
		Element 1066	
	12.7.3	Lumped-Mass Versus Consistent-	Mass
		Matrices 1067	
12.8	Exampl	les Using MATLAB 1069	
	Chapte	r Summary 1073	
	Referen	nces 1073	
	Review	Questions 1074	
	Problem	ns 1076	
	Design	Projects 1088	

Chapters 13 and 14 are provided as downloadable files on the Companion Website.

Nonl	inear V	ibration 13-1
13.1	Introdu	ction 13-2
13.2	Example	es of Nonlinear Vibration Problems 13-3
	13.2.1	Simple Pendulum 13-3
	13.2.2	Mechanical Chatter, Belt Friction
		System 13-5
	13.2.3	Variable Mass System 13-5
13.3	Exact N	13-6
13.4	Approx	imate Analytical Methods 13-7
	13.4.1	Basic Philosophy 13-8
	13.4.2	Lindstedt's Perturbation
		Method 13-10
	13.4.3	Iterative Method 13-13
	13.4.4	Ritz-Galerkin Method 13-17
13.5	Subhar	monic and Superharmonic
	Oscillat	ions 13-19
	13.5.1	Subharmonic Oscillations 13-20
	13.5.2	Superharmonic Oscillations 13-23

13.6	Systems	with Time-Dependent Coefficients	
	(Mathie	u Equation) 13-24	
13.7	Graphic	cal Methods 13-29	
	13.7.1	Phase-Plane Representation 13-29	
	13.7.2	Phase Velocity 13-34	
	13.7.3	Method of Constructing	
		Trajectories 13-34	
	13.7.4	Obtaining Time Solution from Phase-Plane	
		Trajectories 13-36	
13.8	Stability	of Equilibrium States 13-37	
	13.8.1	Stability Analysis 13-37	
	13.8.2	Classification of Singular Points 13-40	
13.9	Limit C	ycles 13-41	
13.10	Chaos	13-43	
	13.10.1	Functions with Stable Orbits 13-45	
	13.10.2	Functions with Unstable Orbits 13-45	
	13.10.3	Chaotic Behavior of Duffing's Equation	
		Without the Forcing Term 13-47	
	13.10.6	Chaotic Behavior of Duffing's Equation	
		with the Forcing Term 13-50	
13.11	Numeri	cal Methods 13-52	
13.12	Example	es Using MATLAB 13-53	
	Chapter Summary 13-62 References 13-62 Review Questions 13-64		
	Problem	ns 13-67	
	Design I	Projects 13-75	

Random Vibration 14-1

14.1	Introduction 14-2			
14.2	Random Variables and Random Processes 14-3			
14.3	Probability Distribution 14-4			
14.4	Mean Value and Standard Deviation 14-6			
14.5	Joint Probability Distribution of Several			
	Random Variables 14-7			
14.6	Correlation Functions of a Random			
	Process 14-9			
14.7	Stationary Random Process 14-10			
14.8	Gaussian Random Process 14-14			
14.9	Fourier Analysis 14-16			
	14.9.1 Fourier Series 14-16			
	14.9.2 Fourier Integral 14-19			

14.10	Power Spectral Density 14-23		
14.11	Wide-Band and Narrow-Band Processes 14-25		
14.12	Response of a Single-Degree-of-Freedom		
	System 14-28		
	14.12.1 Impulse-Response Approach	14-28	
	14.12.2 Frequency-Response Approach	14-30	
	14.12.3 Characteristics of the Response		
	Function 14-30		
14.13	Response Due to Stationary Random		
	Excitations 14-31		
	14.13.1 Impulse-Response Approach	14-32	
	14.13.2 Frequency-Response Approach	14-33	
14.14	Response of a Multidegree-of-Freedom		
	System 14-39		
14.15	Examples Using MATLAB 14-46		
	Chapter Summary 14-49		
	References 14-49		
	Review Questions 14-50		
	Problems 14-53		
	Design Project 14-61		

APPENDIX A

1092 Mathematical Relations and Material Properties

APPENDIX B 1095 Deflection of Beams and Plates

APPENDIX C

1097 Matrices

APPENDIX D

1104 Laplace Transform

APPENDIX E

1112 Units

APPENDIX F

1116 Introduction to MATLAB

1126 Answers to Selected Problems

1135 Index

Preface

Changes in This Edition

This book serves as an introduction to the subject of vibration engineering at the undergraduate level. The style of the prior editions has been retained, with the theory, computational aspects, and applications of vibration presented in as simple a manner as possible. As in the previous editions, computer techniques of analysis are emphasized. Expanded explanations of the fundamentals are given, emphasizing physical significance and interpretation that build upon previous experiences in undergraduate mechanics. Numerous examples and problems are used to illustrate principles and concepts. Favorable reactions and encouragement from professors and students have provided me with the impetus to prepare this sixth edition of the book.

Several additions and modifications are made to the fifth edition to make the coverage of vibration more comprehensive and presentation easier to follow in the sixth edition. Most of these additions and modifications were suggested by those who have used the text and by several reviewers. Some of these are indicated below.

- A brief discussion of the anatomy of the human ear and how vibrations are converted into sound by the ear. Experienced engineers can predict the specific cause of malfunction of a machine or engine just by hearing the sound generated by the malfunction.
- Several new applications of vibration are introduced through new problems. The problems are related to the vibration of a child restraint in a child-seat in an automobile, the prediction of injury to head in an automobile accident, the vibratory response of a diver on a high board, the transportation of a precision instrument, and new problems on vibration control.
- The solutions of five examples and eight illustrations are revised for improved presentation so that the reader understands the concept/solution process more easily.
- Additional details are included in the sections related to the response of an undamped system under initial conditions for improved presentation.
- The description and formulation of vibration problems in several different systems of units is considered to obtain the same response of the physical system.
- A new section titled Beams on Elastic Foundation is added along with illustrative examples and problems. This topic finds application in practical situations such as a railway track.
- The stability and vibration of branches of trees with birds sitting on them is considered using the basic principles of mechanics and vibration.
- Nine new examples, 54 new problems (including three new design projects) and 14 new illustrations are added in this edition.

Features of the Book

- Each topic in *Mechanical Vibrations* is self-contained, with all concepts explained fully and the derivations presented with complete details.
- Computational aspects are emphasized throughout the book. MATLAB-based examples as well as several general purpose MATLAB programs with illustrative examples are given in the last section of every chapter. Numerous problems requiring the use of MATLAB or MATLAB programs (given in the text) are included at the end of every chapter.
- Certain topics are presented in a somewhat unconventional manner. The topics of Chapters 9, 10, and 11 fall in this category. Most textbooks discuss isolators, absorbers, and balancing in different chapters. Since one of the main purposes of the study of vibrations is to control vibration response, all topics related to vibration control are given in Chapter 9. The vibration measuring instruments, along with vibration exciters, experimental modal analysis procedure, and machine condition monitoring, are together presented in Chapter 10. Similarly, all the numerical integration methods applicable to single- and multi-degree-of-freedom systems, as well as continuous systems, are unified in Chapter 11.
- Specific features include the following:
 - 252 illustrative examples are given to accompany most topics.
 - 988 review questions are included to help students in reviewing and testing their understanding of the text material. The review questions are in the form of multiple choice questions, questions with brief answers, true-false questions, questions involving matching of related descriptions, and fill-in-theblank type questions.
 - An extensive set of problems is given in each chapter emphasizing a variety of applications of the material covered in that chapter. In total, there are 1214 problems, with solutions in the instructor's manual.
 - 34 design-project-type problems, many with no unique solution, are given at the end of various chapters.
 - 55 MATLAB programs are included to aid students in the numerical implementation of the methods discussed in the text.
 - Biographical information about 22 scientists and engineers who contributed to the development of the theory of vibrations is presented on the opening pages of all chapters and appendices.
 - MATLAB programs given in the book, answers to problems, and answers to review questions can be found on the Companion Website, www.pearsonglobaleditions.com/rao. The Solutions Manual, with solutions to all problems and hints to design projects, is available to instructors who adopt the text for their courses via download from "Instructor Resources" at www.pearsonglobaleditions.com/rao.

Units and Notation

The SI system of units has been used in the examples and problems. A list of symbols, along with the associated units in the SI system, appears after the Acknowledgments. A brief discussion of SI units as they apply to the field of vibrations is given in Appendix E. Arrows are used over symbols to denote column vectors and square brackets are used to indicate matrices.

Organization of Material

Mechanical Vibrations is organized into 14 chapters and 6 appendices. The reader is assumed to have a basic knowledge of statics, dynamics, strength of materials, and differential equations. Although some background in matrix theory and Laplace transform is desirable, an overview of these topics is given in Appendices C and D, respectively. Chapter 1 starts with a brief discussion of the history and importance of vibrations. The modeling of practical systems for vibration analysis along with the various steps involved in the vibration analysis are discussed. A description of the elementary parts of a vibrating system—stiffness, damping, and mass (inertia)—is given. The basic concepts and terminology used in vibration analysis are introduced. The free vibration analysis of single-degree-of-freedom undamped and viscously damped translational and torsional systems is given in Chapter 2. The graphical representation of characteristic roots and corresponding solutions, the parameter variations, and root locus representations are discussed. Although the root locus method is commonly used in control systems, its use in vibration is illustrated in this chapter. The response under Coulomb and hysteretic damping is also considered in Chapter 3. The concepts of force and displacement transmissibilities and their application in practical systems are outlined. The transfer function approach, the Laplace transform solution of forced vibration problems, the frequency response, and Bode diagram are presented.

Chapter 4 is concerned with the response of a single-degree-of-freedom system under general forcing function. The roles of Fourier series expansion of a periodic function, convolution integral, Laplace transform, and numerical methods are outlined with illustrative examples. The specification of the response of an underdamped system in terms of peak time, rise time, and settling time is also discussed. The free and forced vibration of twodegree-of-freedom systems is considered in Chapter 5. The self-excited vibration and stability of the system are discussed. The transfer function approach and the Laplace transform solution of undamped and damped systems are also presented with illustrative examples. Chapter 6 presents the vibration analysis of multidegree-of-freedom systems. Matrix methods of analysis are used for the presentation of the theory. The modal analysis procedure is described for the solution of forced vibration problems in this chapter. Several methods of determining the natural frequencies and mode shapes of discrete systems are outlined in Chapter 7. The methods of Dunkerley, Rayleigh, Holzer, Jacobi, and matrix iteration are discussed with numerical examples.

While the equations of motion of discrete systems are in the form of ordinary differential equations, those of continuous or distributed systems are in the form of partial differential equations. The vibration analysis of continuous systems, including strings, bars, shafts, beams, and membranes is given in Chapter 8. The method of separation of variables is presented for the solution of the partial differential equations associated with continuous systems. The Rayleigh and Rayleigh-Ritz methods of finding the approximate natural frequencies are also described with examples. Chapter 9 discusses the various aspects of vibration control, including the problems of elimination, isolation, and absorption. The vibration nomograph and vibration criteria which indicate the acceptable levels of vibration are also presented. The balancing of rotating and reciprocating machines and the whirling of shafts are considered. The active control techniques are also outlined for controlling the response of vibrating systems. The experimental methods used for vibration response measurement are considered in Chapter 10. The hardware used for vibration measurements and signal analysis techniques are described. The machine condition monitoring and diagnosis techniques are also presented.

Chapter 11 presents several numerical integration techniques for finding the dynamic response of discrete and continuous systems. The central difference, Runge-Kutta, Houbolt, Wilson, and Newmark methods are discussed and illustrated. Finite element analysis, with applications involving one-dimensional elements, is discussed in Chapter 12. Bar, rod, and beam elements are used for the static and dynamic analysis of trusses, rods under torsion, and beams. The use of consistent and lumped mass matrices in the vibration analysis is also discussed in

this chapter. Nonlinear vibration problems are governed by nonlinear differential equations and exhibit phenomena that are not predicted or even hinted by the corresponding linearized problems. An introductory treatment of nonlinear vibration, including a discussion of subharmonic and superharmonic oscillations, limit cycles, systems with time-dependent coefficients, and chaos, is given in Chapter 13. The random vibration of linear vibration systems is considered in Chapter 14. The concepts of random process, stationary process, power spectral density, autocorrelation, and wide- and narrow-band processes are explained. The random vibration response of single- and multidegree-of-freedom systems is discussed in this chapter.

Appendices A and B focus on mathematical relationships and deflection of beams and plates, respectively. The basics of matrix theory, Laplace transform, and SI units are presented in Appendices C, D, and E, respectively. Finally, Appendix F provides an introduction to MATLAB programming.

Typical Syllabi

The material of the book provides flexible options for different types of vibration courses. Chapters 1 through 5, Chapter 9, and portions of Chapters 6 constitute a basic course in mechanical vibration. Different emphases/orientations can be given to the course by covering, additionally, different chapters as indicated below:

- Chapter 8 for continuous or distributed systems.
- Chapters 7 and 11 for numerical solutions.
- Chapter 10 for experimental methods and signal analysis.
- Chapter 12 for finite element analysis.
- Chapter 13 for nonlinear analysis.
- Chapter 14 for random vibration.

Alternatively, in Chapters 1 through 14, the text has sufficient material for a one-year sequence of two vibration courses at the senior or dual level.

Expected Course Outcomes

The material presented in the text helps achieve some of the program outcomes specified by ABET (Accreditation Board for Engineering and Technology):

- Ability to apply knowledge of mathematics, science, and engineering: The subject of vibration, as presented in the book, applies the knowledge of mathematics (differential equations, matrix algebra, vector methods, and complex numbers) and science (statics and dynamics) to solve engineering vibration problems.
- Ability to identify, formulate, and solve engineering problems: The numerous illustrative examples, problems for practice, and design projects help identify various types of practical vibration problems and develop mathematical models, analyze, solve to find the response, and interpret the results.
- Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice:
 - The application of the modern software, MATLAB, for the solution of vibration problems is illustrated in the last section of each chapter. The basics of MATLAB programming are summarized in Appendix F.

20 PREFACE

- The use of the modern analysis technique, Finite Element Method, for the solution of vibration problems is covered in a separate chapter (Chapter 12). The finite element method is a popular technique that is used in industry for the modeling, analysis, and solution of complex vibrating systems.
- Ability to design and conduct experiments, as well as to analyze and interpret data: The experimental methods and analysis of data related to vibration are presented in Chapter 10. The equipment used in conducting vibration experiments, signal analysis, and identification of system parameters from the data are discussed.

Acknowledgments

I would like to express my appreciation to the many students and faculty whose comments have helped me improve the book. I am most grateful to the following people for offering their comments, suggestions, and ideas:

Pierre Larochelle, Florida Institute of Technology, Melbourne, FL; Scott Larwood, University of the Pacific, Stockton, CA; Justin Chang, University of Pennsylvania, Philadelphia, PA; Jasna Bogunovic Jacobsen, University of Stavanger, Norway; Jeong Su, Jeonnam University, South Korea; Ehsan Rezae, University of Nebraska, Lincoln, NE; Junpeng Zhao, Beihang University, Beijing, China; Daniel Granger, Polytechnic School of Montreal, Canada; K. M. Rao, V.R.S. Engineering College, Vijayawada, India; K. S. Shivakumar Aradhya, Gas Turbine Research Establishment, Bangalore, India; Donald A. Grant, University of Maine; Tom Thornton, Stress Analyst; Alejandro J. Rivas, Arizona State University; Qing Guo, University of Washington; James M. Widmann, California Polytechnic State University; G. Q. Cai, Florida Atlantic University; Richard Alexander, Texas A & M University; C. W. Bert, University of Oklahoma; Raymond M. Brach, University of Notre Dame; Alfonso Diaz-Jimenez, Universidad Distrital "Francisco Jose de Caldas," Colombia; George Doyle, University of Dayton; Hamid Hamidzadeh, South Dakota State University; H. N. Hashemi, Northeastern University; Zhikun Hou, Worchester Polytechnic Institute; J. Richard Houghton, Tennessee Technological University; Faryar Jabbari, University of California, Irvine; Robert Jeffers, University of Connecticut; Richard Keltie, North Carolina State University; J. S. Lamancusa, Pennsylvania State University; Harry Law, Clemson University; Robert Leonard, Virginia Polytechnic Institute and State University; James Li, Columbia University; Sameer Madanshetty, Boston University; M. G. Prasad, Stevens Institute of Technology; F. P. J. Rimrott, University of Toronto; Subhash Sinha, Auburn University; Daniel Stutts, University of Missouri-Rolla; Massoud Tavakoli, Georgia Institute of Technology; Theodore Terry, Lehigh University; Chung Tsui, University of Maryland, College Park; Alexander Vakakis, University of Illinois, Urbana-Champaign; Chuck Van Karsen, Michigan Technological University; Aleksandra Vinogradov, Montana State University; K. W. Wang, Pennsylvania State University; William Webster, GMI Engineering and Management Institute; Faissal A. Moslehy, University of Central Florida; Masoud Mojtahed, Purdue University; and F. Ernesto Penado, Northern Arizona University.

I would like to thank Purdue University for granting me permission to use the Boilermaker Special in Problem 2.104. My sincere thanks to Dr. Qing Liu for helping me in writing some of the MATLAB programs. I need to appreciate my granddaughters, Siriveena and Samanthake, for their many intangible contributions that made my work very pleasant. Finally, I wish to thank my wife, Kamala, without whose patience, encouragement, and support this edition might never have been completed.

SINGIRESU S. RAO srao@miami.edu

Global Edition

The publishers would like to thank the following for their contribution to the Global Edition:

Contributor

Philip Griffin

Philip received his PhD degree in Mechanical Engineering from the University of Limerick (UL), Ireland. He is currently a faculty member in UL's School of Engineering, where he teaches undergraduate courses in Applied Engineering Mechanics and Vibrations and graduate courses in Computational Mechanics to Mechanical Engineering students. His research interests include both experimental and computational mechanics, with particular emphasis on simulating transient flow phenomena and observing how they interact with structures and systems to generate noise and vibration.

Reviewers

Jin Hyuk-Lee, Department of Mechanical Engineering, American University of Sharjah Santosh Kumar Dwivedy, Mechanical Engineering Department, Indian Institute of Technology Guwahati Luis Medina, Departamento de Mecánica, Universidad Simón Bolívar